医疗革命——医学数据挖掘的理论与实践
  • 推荐0
  • 收藏5
  • 浏览883

医疗革命——医学数据挖掘的理论与实践

邵学杰 (作者) 

  • 丛  书:CDA数据分析师系列丛书
  • 书  号:978-7-121-29867-7
  • 出版日期:2016-09-26
  • 页  数:192
  • 开  本:16(185*235)
  • 出版状态:上市销售
  • 维护人:石倩
本书以数据挖掘与模式识别的七大原理在临床医学中的运用案例为切入点,系统而全面地介绍了医学数据挖掘的基本方法与原理,对数据分析的常用算法进行了通俗易懂的讲解。本书最大的特色是采用了案例分析与实证的方法,每一个原理、算法都在案例讲解中生动地体现出来。更重要的是,本书对临床医学的数据挖掘与模式识别技术进行了开创性、系统性的讨论,用案例展现了数据挖掘技术如何与临床医学相结合,为广大的医生、医学数据挖掘爱好者提供了很实用的技术示范、理念导入、系统思考。
本书所有概念的讲解基本结构为原理讲解与案例实操的二元结构,兼顾初学者与专业人士的需要。本书重点探讨了数据挖掘技术如何与临床医学深度融合,如何运用现代的数据挖掘理念、模式识别与机器学习的基本方法解决临床科研中的应用问题,为广大的科研型临床医生提供助力,为广大的数据分析人员找到行业应用的范例,为广大初学者提供努力学习的方向,更重要的是在这个大数据时代,我们可以亲自见证数据技术是如何改变并深刻影响着临床医学的科研与教学。
采用大量案例与实证,重点探讨数据挖掘技术如何与临床医学深度融合



Big Data(大数据)在这几年突然火红于日常生活的各项领域中,连临床医疗也不例外,其实早期就存在许多通过数据来佐证或者分析预测结果的例子,但是当时在大多数的情况之下,统计运算不够快速成为了资料分析的一大限制,因此大多数资料是被临床研究工作者们放在一边而从未思考该如何运用的。伴随着信息科技的进步以及发达,能为我们所分析的数据将呈现爆炸性的成长,因此人们能从数据中学习的知识会更加丰富。和其他科学领域相比,需要透过大量临床试验的医学领域算是进步较缓慢的学科。管仲曾说过:“不明于数欲举大事,如舟之无楫而欲行于大海也。”意思是说在不清楚相关数据的情况下想做大事,无疑是没有桨的船想航行于汪洋大海中一样。也就是说,在医疗大数据的时代下,“dry lab”的医疗数据研究将会是协助医学领域快速进步的一大重要关键。本书通过大量临床医学的实例,由浅入深地介绍各项数据分析以及数据挖掘的方法和工具,将大量的临床医学数据化繁为简。相信无论是在校的学生或是临床研究者,本书都将会是学习或科研路上不可或缺的好伙伴。

谢邦昌
台北医学大学管理学院及大数据研究中心 院长/主任
中华市场研究协会理事长
中华资料采矿协会荣誉理事长




前 言


在医学大数据时代,数据技术带来了临床医学科研的革命性进步。本书通过对医疗数据挖掘的基本理论的阐述,将现代统计学与数据挖掘技术有机结合,讲述了大量的医学数据挖掘的案例,提供了大量的医学数据挖掘的实操方法。医学数据模式识别的七大原理与案例讲解是本书具有独创性的对医学数据技术的全面概括与总结,七大原理的首次提出也是医学数据挖掘技术上升到系统理论的重要实践与创新。无论是预测性建模、解释性建模、知识性建模与描述性建模,抑或是序列模式建模、依赖关系建模、异常模式建模,模式识别的类型规律跃然纸上,为专业人士或初学者厘清了数据挖掘与模式识别的基本类型特征。
不仅如此,本书选取的大量的医学数据挖掘案例为本书的实用性增加了学以致用的特色,凡认真阅读本书的读者都会从理论与实操两个层面全面、系统、实用地了解医学数据挖掘的原理与方法。本书以胰腺癌与二型糖尿病的关联规则、乳腺癌图片智能识别的挖掘算法、心电信号大数据的人工智能识别、低位前切保肛术的荟萃分析、贝叶斯网络预测高血压患者心血管风险、基线静息心率评估心血管事件、老年肺癌研究的荟萃分析等实用数据技术为切入点,使初学者能够掌握医学数据挖掘的基本理论与方法,因此是一本很好的入门级教科书。
对于资深的临床医生、医学博士、论文写作者而言,本书也是一本很好的案例参考书。特别是对于医学科研课题而言,本书提供了强大的实际操作技术培训与案例讲解,从顶级的国际期刊《自然》、《细胞》、《柳叶刀》等杂志选取经典的数据分析案例,用生动的方法让读者可以学到医学论文中数据、图表、算法的实际使用方法;因而对于专业人员而言,本书又是一本很好的资深级别的专业用书。
我们相信,无论您是初学者还是资深的专业人士,本书都将为您提供极大的可读性、趣味性和科学性。

目录

第1章 数据分析与数据挖掘的力量 1
1.1 葡萄牙医生解决世界新生儿出生缺陷的故事 2
1.2 医学数据挖掘的主要定义 5
1.2.1 数据挖掘的定义 5
1.2.2 医学数据挖掘的故事 5
1.3 医学数据模式识别的七大原理与案例讲解 6
1.3.1 什么是模式识别 6
1.3.2 7个小故事 7
1.4 临床医学领域的机器学习与人工智能 12
1.5 神经元网络的基本原理 13
第2章 临床医学的数据挖掘 20
2.1 房颤与肾功能关联现象的故事 21
2.2 支持向量机的算法原理与应用 30
2.2.1 一个故事的开场白 30
2.2.2 支持向量机的主要特点 31
2.2.3 支持向量机的应用案例 39
2.3 疾病规律与统计学革命 43
2.3.1 肝胆外科的统计学故事 43
2.3.2 双盲实验的诞生 44
2.3.3 几则很有趣的医学统计学故事 47
2.4 老年肺癌研究 50
2.4.1 数据的抓取与来源 50
2.4.2 癌症与老龄化的相关性分析 51
2.4.3 老年人肺癌手术适用性评估关键词频率 53
2.4.4 老年肺肿瘤的数据分析 54
2.4.5 英国肺癌患者38年来死亡率研究 59
2.4.6 老龄肺癌死亡率数据的三维分析 59
2.5 临床医学与数据挖掘的边缘学科 62
2.5.1 几个实例 62
2.5.2 医学统计学与医学数据挖掘的区别 69
2.5.3 有关数据挖掘是边缘学科的几个实例 72
2.5.4 一个医学数据挖掘的案例 74
第3章 临床医学与数据技术的深度融合 90
3.1 二型糖尿病与胰腺癌的故事 91
3.2 Cox回归的基本原理与应用 94
3.2.1 Cox回归的基本原理 94
3.2.2 晚期肺癌伴脑转移患者的预后多因素Cox回归 95
3.2.3 本案例的几点启示 100
3.3 医学数据分析中的故事 101
3.4 聚类的临床医学意义 103
3.4.1 聚类算法的基本定义 103
3.4.2 临床医学数据挖掘中聚类的意义 104
3.4.3 案例 112
3.5 贝叶斯算法的应用案例 113
3.5.1 一个流传甚广的故事 113
3.5.2 一个贝叶斯算法的医学案例 114
第4章 临床医学的模式识别 126
4.1 模式识别是什么 127
4.1.1 定义 127
4.1.2 临床医学模式识别的故事 127
4.2 基线静息心率的故事 130
4.3 决策树算法 132
4.4 最大期望(EM)算法 135
4.5 算法的规律与临床医学的本质 140
4.5.1 算法的本质是什么 140
4.5.2 数据挖掘中医学的本质 141
第5章 医学数据挖掘的常用工具 146
5.1 SAS挖掘软件运用案例 147
5.2 Weka软件介绍 150
5.3 Matlab案例 152
5.4 R语言案例 162
5.5 临床医生如何用好挖掘工具 164
第6章 专业级医学SCI论文中的统计工具 169
6.1 医学数据中的T值与P值故事 170
6.2 K线图的故事 172
6.3 国际顶级期刊上的数据技术 174
6.4 SCI荟萃分析中的统计学工具 180
6.4.1 研究对象及入选标准 181
6.4.2 统计学处理 181

读者评论

同系列书

相关图书

实用推荐系统

Kim Falk (作者) 李源 朱罡罡 温睿 (译者)

要构建一个实用的“智能”推荐系统,不仅需要有好的算法,还需要了解接收推荐的用户。本书分为两部分,第一部分侧重于基础架构,主要介绍推荐系统的工作原理,展示如何创建...

¥119.00

集成学习:基础与算法

Zhi-Hua Zhou (作者) 李楠 (译者)

集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。<br>全书分为三部分。第一部分主要介绍集成学...

¥89.00

深度学习核心技术与实践

邓澍军 (作者)

本书主要介绍深度学习的核心算法,以及在计算机视觉、语音识别、自然语言处理中的相关应用。本书的作者们都是业界第一线的深度学习从业者,所以书中所写内容和业界联系紧密...

¥79.00

Java微服务实战

赵计刚 (作者)

本书分为三部分:基础框架篇(1~6章)、服务框架篇(7~10章)、监控部署篇(11~13章),由浅入深来讲解微服务的相关技术。基础框架篇从微服务架构的基本概念与...

¥39.00

深度学习入门之PyTorch

廖星宇 (作者)

深度学习如今已经成为了科技领域最炙手可热的技术,在本书中,我们将帮助你入门深度学习的领域。本书将从人工智能的介绍入手,了解机器学习和深度学习的基础理论,并学习如...

¥49.00

套路!机器学习:北美数据科学家的私房课

林荟 (作者)

数据科学家目前是北美最热门的职业之一,平均年薪突破10万美元。但数据科学并不是一个低门槛的行业,除了对数学、统计、计算机等相关领域的技术要求以外,还要相关应用领...

¥68.00