零起点Python机器学习快速入门
  • 推荐0
  • 收藏12
  • 浏览3.9K

零起点Python机器学习快速入门

何海群 (作者) 

  • 书  号:978-7-121-31141-3
  • 出版日期:2017-04-12
  • 页  数:284
  • 开  本:16(170*240)
  • 出版状态:上市销售
本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法。书中配备大量图表说明,没有枯燥的数学公式,普通读者,只要懂Word、Excel,就能够轻松阅读全书,并学习使用书中的知识,分析大数据。本书具有以下特色:
独创的黑箱教学模式,全书无任何抽象理论和深奥的数学公式。
首次系统化融合Sklearn人工智能软件和Pandas数据分析软件,不用再直接使用复杂的Numpy数学矩阵模块。
系统化的Sklearn函数和API中文文档,可作为案头工具书随时查阅。
基于Sklearn+Pandas模式,无须任何理论基础,全程采用MBA案例模式,懂Excel就可看懂。
读完本书内容和配套的教学代码,就能够编写简单的机器学习函数。
本书是一部意外之作,也是一部惊喜之作。
这是一本非常简单的 Python 机器学习入门教程,具有以下特色。
独创的黑箱教学模式,全书无任何抽象理论和深奥的数学公式。
首次系统化融合 Sklearn 人工智能软件和 Pandas 数据分析软件,无须使用复杂的 Numpy 数学矩阵模块。
三位一体的课件模式:图书+开发平台+成套的教学案例,系统讲解,逐步深入。
系统化的Sklearn函数API接口中文文档,可作为案头工具书随时查阅。
基于 Sklearn+Pandas 架构,全程采用 MBA 案例模式,无需任何理论基础,懂 Excel 就可看懂。
本书内容原本是《零起点 Python 足彩大数据与机器学习实盘分析》中的章节,在我们内部小范围使用时,深受学员喜爱,于是,将书中与机器学习相关的内容和案例单独抽取出来,加入部分 Python 入门内容,形成了《零起点 Python 机器学习快速入门》一书。
Python 量化三部曲包括:
《零起点 Python 大数据与量化交易》(入门教材)
《零起点 Python 量化与机器学习实盘分析》(重点分析 Sklearn)
《零起点 Python 量化与 TensorFlow 深度学习实盘分析》(重点分析
TensorFlow)
此外,还有两部补充作品:
《零起点 Python 足彩大数据与机器学习实盘分析》
《零起点 Python 机器学习快速入门》
Python学习路线
机器学习、人工智能和金融量化基本原理都是相通的,本质上都是数据分析。
本书虽然属于“零起点 Python”系列,但要更好地学习本书,掌握相关的配套程序,最好具备以下基础。
Python 编程基础,不懂 Python 语言的读者,先花一周时间学习 Python基本知识以及 Pandas(潘达思)数据分析软件基础操作。
Top 极宽量化社区有“Python 量化与 zwQuant 学习路线图”,大家可以参考,网址是:http://topquant.vip/forum.php?mod=viewthread&tid=6。
先花一周时间学习 Python 基础,再阅读《zwPython 中文手册》,可以少走很多弯路。
学好 Python、Pandas 基础后,先将本书通读 1~2 遍。通读时,碰到问题没关系,记录一下跳过去,然后进行精读;正式学习每章的代码时,一定要将代码运行 1~2 遍,培养编程感觉。
根据代码学习画流程图,有了流程图就可以把握程序逻辑,重点是程序和策略的逻辑。
入门后,多看看配套的课件和程序源码,全套 zwQuant 量化开源程序都带有函数一级的中文注解。
在学习过程当中一定要多问,可以在论坛提问,这样大家都受益。
本书读者 QQ 群号:124134140。在群文件中有一个小软件,即 Python流程图绘制软件 CODINGRAPH,使用该软件,拷贝代码就可以自动绘制流程图,对其他编程语言也适用。
网络资源
与本书有关的程序和数据下载,请浏览网站:http://TopQuant.vip,极宽量化社区中的【下载中心】栏目。本书在 TopQuant.vip 极宽量化社区设有专栏,对本书、人工智能和机
器学习有任何建议都可在社区相关栏目发布信息,我们会在第一时间进行反馈和答复。
“零起点Python”系列丛书
本书继续保持了“零起点 Python”系列丛书的一贯风格——简单实用。
书中配备了大量的图表说明,没有枯燥的数学公式,只要懂 Word、Excel,
就能够轻松阅读全书。
IT 零起点:无需任何电脑编程基础,只要会打字、会使用 Excel,就能看懂本书,利用本书配套的 Python 软件包,轻松学会如何利用 Python对股票和足彩数据进行专业分析和量化投资分析。
投资零起点:无须购买任何专业软件,本书配套的 zwPython 软件包,采用开源模式,提供 100%全功能、全免费的工业级数据分析平台。
配置零起点:所有软件、数据全部采用苹果“开箱即用”模式,绿色版本,无须安装,解压缩后即可直接运行系统。
理财零起点:无需任何专业金融背景,采用通俗易懂的语言,配合大量专业的图表和实盘操作案例,轻松掌握各种量化投资策略。
数学零起点:全书没有任何复杂的数学公式,只有最基本的加、减、乘、除,轻轻松松就能看懂全书。
致谢
本书的出版要特别感谢电子工业出版社的黄爱萍编辑,感谢她在选题策划和稿件整理方面做出的大量工作。
在本书创作过程中,极宽开源量化团队和培训班的全体成员,也提出过很多宝贵的意见,并对部分内容程序做了中文注解。特别是吴娜、余勤两位同学,为极宽开源量化文库和 zwQuant 开源量化软件编写文档,并在团队成员管理方面做了大量工作,为他们的付出表示感谢。
何海群(字王)
北京极宽科技有限公司 CTO
2017 年 2 月 25 日

目录

第 1 章 从阿尔法狗开始说起1
1.1 阿尔法狗的前世今生.......1
1.2 机器学习是什么.....2
1.3 机器学习大史记.....3
1.4 机器学习经典案例......... 11
第 2 章 开发环境......13
2.1 数据分析首选 Python.....13
2.2 用户运行平台.......18
2.3 程序目录结构.......19
2.4 Spyder 编辑器界面设置.20
2.5 Python 命令行模式.........26
2.6 Notebook 模式......27
2.7 模块库控制面板...29
2.8 使用 pip 更新模块库......33
第 3 章 Python 入门案例....39
3.1 案例 3-1:第一次编程“hello,ziwang” ....39
3.2 案例 3-2:增强版“hello,zwiang” ..42
3.3 案例 3-3:列举系统模块库清单.......44
3.4 案例 3-4:常用绘图风格.........45
3.5 案例 3-5:Pandas 常用绘图风格.......47
3.6 案例 3-6:常用颜色表 cors.....49
3.7 案例源码.....50
第 4 章 Python 基本语法....58
4.1 数据类型.....58
案例 4-1:基本运算.......59
4.2 字符串.........61
案例 4-2:字符串入门...61
案例 4-3:字符串常用方法.....63
4.3 List 列表......64
案例 4-4:列表操作.......65
4.4 Tuple 元组...66
案例 4-5:元组操作.......67
4.5 Dictionary 字典.....68
案例 4-6:字典操作.......68
4.6 数据类型转换.......70
案例 4-7:控制语句.......71
案例 4-8:函数定义.......73
4.7 案例源码.....75
第 5 章 Python 人工智能入门与实践......85
5.1 从忘却开始.85
5.2 Iris 经典爱丽丝.....89
案例 5-1:Iris 爱丽丝 ....90
案例 5-2:爱丽丝进化与文本矢量化.........92
5.3 AI 操作流程95
5.4 数据切割函数.......98
案例 5-3:Iris 爱丽丝分解 ......99
案例 5-4:线性回归算法.......103
5.5 案例源码...109
第 6 章 机器学习经典算法案例(上) . 116
6.1 线性回归... 116
6.2 逻辑回归算法.....124
案例 6-1:逻辑回归算法.......125
6.3 朴素贝叶斯算法.127
案例 6-2:贝叶斯算法.129
6.4 KNN 近邻算法 ...130
案例 6-3:KNN 近邻算法.....133
6.5 随机森林算法.....135
案例 6-4:随机森林算法.......139
6.6 案例源码...140
第 7 章 机器学习经典算法案例(下) .149
7.1 决策树算法.........149
案例 7-1:决策树算法.151
7.2 GBDT 迭代决策树算法.........153
案例 7-2:GBDT 迭代决策树算法.154
7.3 SVM 向量机 .......156
案例 7-3:SVM 向量机算法.157
7.4 SVM-cross 向量机交叉算法..159
案例 7-4:SVM-cross 向量机交叉算法....160
7.5 神经网络算法.....161
案例 7-5:MLP 神经网络算法........165
案例 7-6:MLP_reg 神经网络回归算法...168
7.6 案例源码...170
第 8 章 机器学习组合算法 .........183
8.1 CCPP 数据集......183
案例 8-1:CCPP 数据集........184
案例 8-2:CCPP 数据切割....186
案例 8-3:读取 CCPP 数据集.........189
8.2 机器学习统一接口函数.........192
案例 8-4:机器学习统一接口.........193
案例 8-5:批量调用机器学习算法.201
案例 8-6:一体化调用.205
8.3 模型预制与保存.208
案例 8-7:储存算法模型.......210
案例 8-8:批量储存算法模型.........213
案例 8-9:批量加载算法模型.........215
案例 8-10:机器学习组合算法.......219
8.4 案例源码...224
附录 A Sklearn 常用模块和函数.242
附录 B 极宽量化系统模块图......266

读者评论

  • 零起点Python机器学习快速入门
    何海群 (作者) 

    这本书有没有更新版本?Python3对以前的版本不兼容。

    gzesun发表于 2022/11/5 15:47:33
  • py_demo 中的代码,包括书上的代码,zai404_mx_01.py zai405_mx_02.py zai406_mx_03 三个文件中,都缺少一个定义 import ztop_ai as zai,导致无法编译通过,加入后运行正常。

    yanglc2015发表于 2018/7/20 15:40:35
  • 书上qq群查不到,想问下群文件里的python流程图绘制软件CODINGRAPH能发我一份吗急用谢谢 邮箱434870031@qq.com

    liu0127发表于 2018/6/21 17:30:26
  • 书上给的QQ群,搜索显示没有该群

    刘奕发表于 2018/3/24 11:20:09
  • P66 页 中 列表常用函数和方法中,这里有个大坑
    第一个 cmp() 函数,在Python3.x 中已经移除了。
    这里需要注意.

    Alex.Song发表于 2017/9/26 14:16:44

相关图书

看漫画学Python:有趣、有料、好玩、好用(全彩修订版)

关东升 著 赵大羽 绘 (作者)

ython是一门既简单又强大的编程语言,被广泛应用于数据分析、大数据、网络爬虫、自动化运维、科学计算和人工智能等领域。Python也越来越重要,成为国家计算机等...

 

看漫画学Python 2:有趣、有料、好玩、好用(全彩进阶版)

关东升 ,赵大羽 (作者)

本书是《看漫画学Python》的进阶版本,继续秉承有趣、有料、好玩、好用的理念,并继续采用《看漫画学Python》一书中3个不同的漫画人物角色,通过这3个角色之...

 

趣玩Python:自动化办公真简单(双色+视频版)

本书以数据收集→数据清洗→数据分析→数据可视化→根据数据可视化结果(即图表)做决策为脉络,介绍Python在实际工作场景中的应用,侧重于用Python解决工作中...

 

软件交付通识

董越 (作者)

软件交付过程是指在编程序改代码之后,直到将软件发布给用户使用之前的一系列活动,如提交、集成、构建、部署、测试等。本书作为通识类图书,对软件交付过程的各个方面进行...

¥89.00

分布式系统与一致性

陈东明 (作者)

一致性是非常重要的分布式技术。众所周知,分布式系统有很多特性,如可用性、可靠性等,这些特性多多少少会与一致性产生关系,受到一致性的影响。要全面研究、掌握分布式技...

¥79.00

人人都是产品经理(案例版):淘宝十年产品事

陶英琪 (作者)

做产品经理需要不断成长。然而回顾漫长的产品发展史,我们总会发现:有太多犯过的错误在反复出现,每一次都会有人掉入同样的“坑”。大量看似充满新意的点子、“前无古人”...

¥69.00