#小编推书#唯一一本以应用为导向的介绍机器学习和深度学习的专业书籍

Jessica瑾妞

2017-08-01

《Keras快速上手:基于Python的深度学习实战》从如何准备深度学习的环境开始,手把手地教读者如何采集数据,如何运用一些最常用,也是目前被认为最有效的一些深度学习算法来解决实际问题。覆盖的领域包括推荐系统、图像识别、自然语言情感分析、文字生成、时间序列、智能物联网等。不同于许多同类的书籍,本书选择了Keras作为编程软件,强调简单、快速的模型设计,而不去纠缠底层代码,使得内容相当易于理解。读者可以在CNTK、TensorFlow和Theano的后台之间随意切换,非常灵活。即使你有朝一日需要用更低层的建模环境来解决更复杂的问题,相信也会保留从Keras中学来的高度抽象的角度审视你要解决的问题,让你事半功倍。

关于本书

《Keras快速上手:基于Python的深度学习实战》系统地讲解了深度学习的基本知识、建模过程和应用,并以深度学习在推荐系统、图像识别、自然语言处理、文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备、数据获取和处理到针对问题进行建模的整个过程和实践经验,是一本非常好的深度学习入门书。

《Keras快速上手:基于Python的深度学习实战》以实际应用为导向,强调概念的认知和实用性,对理论的介绍深入浅出,对读者的数学水平要求较低,读者在学习完毕后能使用案例程序举一反三地应用到其具体场景中。覆盖当前最热门的传统数据挖掘场景和四个深度学习应用场景,具备很高的参考价值和学术价值。

《Keras快速上手:基于Python的深度学习实战》分成 10 章,系统性地讲解深度学习基本知识、使用 Keras 建模过程和应用,并提供详细代码,使读者可以花最少的时间把核心建模知识学到手。其中第 1 章介绍搭建深度学习环境,是整本书的基础。第 2 章介绍如何用网络爬虫技术收集数据并使用ElasticSearch 存储数据。因为在很多应用中,数据需要读者自行从网上爬取和并加以处理和存储。第 3 章介绍深度学习模型的基本概念。第 4 章介绍深度学习框架 Keras 的用法。第 5~9 章,是 5 个深度学习的经典应用。我们会依次介绍深度学习在推荐系统、图像识别、自然语言处理、文字生成和时间序列的具体应用。在介绍这些应用的过程中会穿插各种深度学习模型和代码,并和读者分享我们对于这些模型的原理和应用场景的体会。最后,我们抛砖引玉地把物联网的概念提出来。我们相信,物联网和深度学习的结合会爆发出巨大的能量和价值。

作者说

2006 年,机器学习领域迎来了重要的转折点。加拿大多伦多大学教授、机器学习领域泰斗 Geoffrey Hinton 和他的学生 Ruslan Salakhutdinov 在《科学》上发表了一篇关于深度置信网络 (Deep Belief Networks) 的论文。从这篇论文的发表开始至今,深度学习有着迅猛的发展。 2009 年,微软研究院语音识别专家俞栋和邓力博士与深度学习专家Geoffery Hinton 合作。 2010 年,美国国防部 DARPA 和斯坦福大学、纽约大学和 NEC美国研究院合作深度学习项目。 2011 年微软宣布基于深度神经网络的识别系统取得成果并推出产品,彻底改变了语音识别原有的技术框架。从 2012 到 2015 年,深度学习技术在图像识别领域取得惊人的效果,在 ImageNet 评测上将错误率从 26% 一路降到 5%以下,几乎接近甚至超过人类的水平。这些都直接促进了一系列围绕深度学习技术的智能产品在市场上的出现,比如微软的认知服务(Cognitive Services)平台,谷歌的智能邮件应答和谷歌助手等。

在中国,我们同样欣喜地看到,基于大数据的机器学习和深度学习算法的大规模应用给互联网行业带来的巨大变革:淘宝的推荐算法、微软的小冰聊天机器人、百度的度秘、滴滴的预估时间和车费、饿了么的智能调度等都应运而生。我们有理由相信,未来的物联网、无人驾驶等也会挖掘出更多深度学习的实用场景。

深度学习对很多科技行业的从业者来说仍有一些神秘感。虽然像谷歌、微软等互联网巨头开源了诸如 TensorFlow、 CNTK 等深度学习平台,大幅降低了从业者的门槛,但是如何举一反三,根据实际问题选择合适的算法和模型,并不容易。作为本书的作者,我们三位在美国谷歌、微软等顶尖互联网科技公司从事多年以机器学习和深度学习为基础的人工智能项目研发,有着丰富的实践经验,深感有必要撰写一本深入浅出的深度学习书籍,分享我们对深度学习的理解和想法,并帮助同行和感兴趣的朋友们快速上手,建立属于自己的端到端的深度学习模型,从而在大数据、深度学习的浪潮中有着更好的职业发展。我们希望本书能起到抛砖引玉的作用,使读者对深度学习产生更多的兴趣,并把深度学习作为一个必备的分析技能。

在本书中,我们选择 Keras 这个流行的深度学习建模框架来讲解深度学习话题。这主要从三方面的考虑。首先, Keras 包括了各种常用的深度学习模块,可以应用于绝大部分业务环境。其次,从原理上讲,它是高度抽象的深度学习编程环境,简单易学。 Keras底层是调用 CNTK、 TensorFlow 或 Theano 执行计算的。最后,作为应用领域的从业者,我们需要关注的是如何把一个商业或者工程问题转化成合适的模型,如何准备数据和分析模型的好坏以及如何解释模型的结果。 Keras 非常适合这样的场景,让使用者脱离具体的矩阵计算和求导,而将重心转移到业务逻辑上。

本书是目前国内不多的系统讲解使用 Keras 这个深度学习框架进行神经网络建模的实用书籍,非常适合数据科学家、机器学习工程师、人工智能应用工程师和工作中需要进行预测建模以及进行回归分析的从业者。本书也适合对深度学习有兴趣的不同背景的从业者、学生和老师。

读者评论

相关博文

  • 推荐系统是如何建立模型、知道用户爱好的?

    推荐系统是如何建立模型、知道用户爱好的?

    管理员账号 2017-08-08

    小编说:你是否有过这样的经历?当你在亚马逊商城浏览一些书籍,或者购买过一些书籍后,你的偏好就会被系统学到,系统会基于一些假设为你推荐相关书目。为什么系统会知道,在这背后又藏着哪些秘密呢?本文选自《Keras快速上手:基于Python的...

    管理员账号 2017-08-08
    373 0 0 0
  • Keras 文字生成系统

    Keras 文字生成系统

    管理员账号 2017-09-27

    同是深度学习“槛内人”,我怎么不知道这样高大上的文字生成对话系统 文字信息是存在最广泛的信息形式之一,而深度学习的序列模型(Sequential Model)在对文字生成建模(Generative Model)方面具备独特的优势。...

    管理员账号 2017-09-27
    92 0 0 0
  • 推荐系统是如何建立模型、知道用户爱好的?

    推荐系统是如何建立模型、知道用户爱好的?

    管理员账号 2017-09-25

    你是否有过这样的经历?当你在亚马逊商城浏览一些书籍,或者购买过一些书籍后,你的偏好就会被系统学到,系统会基于一些假设为你推荐相关书目。系统从百万甚至上亿的内容或商品中把有用的东西高效地显示给用户,这样可以为用户节省很多自行查询的时间,...

    管理员账号 2017-09-25
    51 0 0 0